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Damping Characteristics of Composite 
Materials and Structures 

~ E G ~ o n  

This paper presents an overview of experimental and analytical approaches that have been used to char- 
acterize damping properties of composite materials and structures, with emphasis on polymer compos- 
ites. A discussion of damping mechanisms operating in composites is followed by a review of several ex- 
perimental methods for measuring damping. A summary of analytical models for predicting damping at 
both the micromechanical and macromechanical levels is presented and comments on ways of improving 
and optimizing damping in composites are offered. 

1 Introduction 

ACCURATE information on damping of structural materials is es- 
sential in the design of structures for noise and vibration control. 
Experimental and analytical characterization of damping is not 
easy, even with conventional structural materials, and the ani- 
sotropic nature of composite materials makes it even more diffi- 
cult. Experimental approaches range from laboratory bench-top 
methods to portable field inspection techniques, whereas ana- 
lytical techniques vary from simple mechanics-of-materials 
methods to sophisticated three-dimensional finite-element ap- 
proaches. This article describes some of the most commonly 
used techniques and discusses their limitations. Several related 
survey articles may also be of interest to the reader. [1-4] 

Although standards have been developed by the American 
Society for Testing and Materials (ASTM) for measurement of 
dynamic mechanical properties of low-modulus polymers [5] and 
add-on damping treatments consisting of high-damping poly- 
mers, [6] none exist specifically for composite materials. Prob- 
lems encountered in applying some of these standard test meth- 
ods to composites are also discussed. 

1.1 Damping Mechanisms 

Damping in composites involves a variety of energy dissipa- 
tion mechanisms that depend on vibrational parameters such as 
frequency and amplitude and environmental conditions such as 
temperature and moisture. In fiber-reinforced polymers, the 
most important damping mechanisms appear to be [71 

1. Viscoelastic behavior of matrix and/or fiber materials 

2. Thermoelastic damping due to cyclic heat flow from regions 
of compressive stress to regions of tensile stress 

3. Co~lomb friction due to slip in unbonded regions of fi- 
ber/matrix interface 

4. Not completely understood dissipation occurring at sites of 
cracks or delaminations in composite 

This paper will emphasize viscoelastic damping, which ap- 
pears to be the dominant mechanism in undamaged polymer 
composites vibrating at small amplitudes. Thermoelastic damp- 
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ing is important in metal matrix composites, but not in polymer 
matrix composites. Other mechanisms, such as dislocation 
damping, are also important in metal matrix composites. 

1.2 Complex Modulus Notation 

Whereas the assumption of linear elastic behavior is nor- 
mally the basis for static mechanical property characterization, 
the assumption of linear viscoelastic behavior is usually the ba- 
sis for dynamic mechanical property analysis including damp- 
ing. Polymer matrix composites in particular are known to ex- 
hibit viscoelastic behavior, which causes energy dissipation and 
frequency dependence of both stiffness and damping. The as- 
sumption of linearity of dynamic viscoelastic response is valid 
when both stiffness and damping are independent of vibration 
amplitude. This appears to be the case with undamaged polymer 
composites vibrating at small amplitudes. 

Complex modulus notation is often thought of as just a 
mathematically convenient way of combining stiffness and 
damping in one expression, but it does have a basis in viscoelas- 
ticity theory. The most general stress-strain relationships for a 
linear viscoelastic anisotropic material may be represented by 
the well known hereditary integral formulation of the Boltz- 
mann superposition principle. [81 Although such equations are 
useful for describing creep or relaxation during static loading, a 
different form is more useful for vibratory loading. Using a con- 
tracted subscript notation [9] and the assumption that stresses and 
strains vary sinusoidally with time, the hereditary integral for- 
mulation reduces to: 

t * lip( ) = Cpq(J~E q(l) [1] 

where 

p, q = 1, 2,...6 

Gp(t) = sinusoidally varying stress components 

Eq(t) = sinusoidally varying strain components 

f =  frequency 

t = time 
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(~pq(f) = complex m o d u l u s  

One of the results of this development is that the frequency 
domain complex modulus is related to the time domain relaxa- 
tion modulus through a Fourier transformation. [8] The complex 
modulus can be expressed as: 

* / ,, Cpq(f) = Cpq(f)  d- C pq(f) 
p 

= C pq(j*) [ 1 + i qpq(f)] [2] 

w h e r e  C'pq(f) --- storage modulus 

ip 
C pq(j*) = l o s s  m o d u l u s  

l~pq(f) ---- lOSS factor = t a n  ~pq(f) 

C" (t)/C' (lq = pqv . -  pqv.  

~pq(t) = phase angle between ~p(t) a n d  s 

i = imaginary operator = 

In this paper, the loss factor is used to characterize damping. 
The storage modulus and the loss factor are actually measured 
during dynamic mechanical testing, whereas the loss modulus is 
a derived property. Although the frequency dependence of the 
complex modulus is assured by the mathematical development, 
the complex moduli of polymeric materials are also known to 
depend on environmental conditions such as temperature and 
moisture. 

The fact that Eq 1 has the same form as a linear elastic stress 
strain law has led to the development of a correspondence prin- 
ciple.rio, u] Using this principle, the corresponding viscoelastic 
forms of other linear elastic constitutive relationships (e.g., 
those for the orthotropic lamina or the general laminate) may be 
found. For example, the dynamic behavior of the orthotropic 
lamina can be characterized by such properties as the complex 
longitudinal modulus, E~(]), the complex transverse modulus, 
E ~  and the complex in-plane shear modulus, G~2(f), whereas 
laminate behavior can be characterized by such properties as the 
complex extensional stiffnesses, A~-(f), and the complex flexural 
stiffnesses, Dt~(f). Obviously, a wide variety of experiments with 
different stress states are necessary to characterize all of the 
complex moduli for an anisotropic composite material.[2] 

Finally, although sinusoidally varying deformations were as- 
sumed in the development, it has been shown that as long as 
stiffness and damping show some frequency dependence, the 
complex modulus notation is also valid for nonsinusoidally 
varying deformations. [12] Anomalous analytical results such as 
noncausal response can occur if the components of the complex 
modulus are independent of frequency. This turns out to be an 
academic problem, however, because polymeric materials do 
have frequency-dependent complex moduli. 

2 Experimental Methods 

2 . 1  Limitations 

Before discussing the details of the various test techniques, it 
is appropriate to discuss some of the problems that are likely to 
be encountered during the tests and subsequent data reduction. 
Some of the problems are inherent in dynamic mechanical test- 
ing of any material (but are worthy of mention again here), and 
some are unique to composites. 

"Parasitic damping" is a collective term for all of the extrane- 
ous energy dissipation that occurs during a dynamic mechanical 
test. Common examples are air damping due to aerodynamic 
drag on the specimen, acoustic radiation, and friction damping 
at specimen support points and transducer attachments. Because 
of parasitic damping, the measured damping values will always 
be greater than the actual material damping. Great care must be 
taken to ensure that parasitic damping has been reduced to an ac- 
ceptable level before reporting damping data. 

Fortunately, most of the parasitic damping mechanisms are 
nonlinear (i.e., the damping depends on amplitude), whereas the 
viscoelastic damping in undamaged polymers due to relaxation 
and recovery of the molecular network following deformation is 
linear. Thus, a check of amplitude dependence of damping can 
be used to detect parasitic damping. Aluminum or steel calibra- 
tion specimens are often used to establish confidence in damp- 
ing measurements, because thermoelastic theory predicts the 
material damping quite accurately and because the damping in 
such metals is much lower than that for composites. [13q8] Cross- 
verification of damping measurements using several different 
techniques is highly recommended. [16-19] Cantilever beam 
specimens vibrating in flexure may be subjected to significant 
air damping. The tip amplitudes should be less than the beam 
thickness if the tests are to be conducted in air--otherwise, the 
test should be conducted in a vacuum. [13, 14, 17] 

Friction damping at specimen support points can be mini- 
mized by attaching supports at nodal points for the vibrational 
mode of interest, or by using stress relief shoulders on the speci- 
men to shift the clamping surface away from the region of high 
stress. Noncontacting response transducers such as eddy cur- 
rent, electro-optical or capacitance probes can be used to elimi- 
nate damping due to motion of transducers and associated lead 
wires. The added mass of transducers such as accelerometers 
may have a significant effect on measured resonant frequencies 
and corresponding modulus calculations. 

The stiffness of the test apparatus should be much greater 
than that of the specimen so that most of the deformation occurs 
in the specimen during the test----otherwise, both modulus and 
damping measurements will be invalid. For example, the com- 
mercially available dynamic mechanical analyzers described in 
the ASTM standards [5] were developed for testing low-modulus 
polymers, and the stiffness of the specimen mounting hardware 
is generally insufficient for accurate determination of dynamic 
properties of high-modulus composites. To reduce the specimen 
stiffness to the range required for valid data with these devices, 
it may be necessary to use specimen thickness on the order of the 
single-ply thickness, so that testing of multi-ply laminates may 
not be possible. Because many of these devices operate in a flex- 
ural mode, laminates that produce coupling between bending 
and twisting and between bending and extension (e.g., unsym- 
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metric layups) should be tested with caution the equations 
used to convert measured Specimen resonant frequencies to stor- 
age moduli are usually based on the assumption of pure bending. 

A related problem is the transverse shear effect in high- 
modulus composite specimens. [2~ Transverse shear effects 
have been shown to be more significant for materials having 
high ratios of extensional modulus to through-the-thickness 
shear modulus, E/G, and this ratio is at least ten times higher for 
high modulus composites than for conventional metallic materi- 
als. Sandwich panels with honeycomb or foam cores have even 
higher E/G ratios due to the low shear modulus of the core mate- 
rial. Transverse shear effects show up at high frequencies, which 
are generated by testing specimens in higher modes or shorter 
lengths. It appears that the length-to-thickness ratio, L/t, for 
highly anisotropic beam specimens must be at least 100 to mini- 
mize shear effects in lower modes. 123, 241 

2.2 Single Degree of Freedom Curve Fitting Methods 

As shown in any vibrations textbook, the parameters describ- 
ing the vibration response of  a single degree of freedom (SDOF) 
spring-mass-damper system may be used in reporting damping 
test results, f251 Single degree of freedom damping parameters 
may be estimated by curve fitting to the measured response of 
material specimens in either free vibration or forced vibration if 
a single mode can be isolated for the analysis. Approximate rela- 
tionships between the loss factor from complex modulus nota- 
tion and these SDOF damping parameters exist for lightly 
damped systems, I261 and such relationships will be used fre- 
quently in the following sections. 

2.3 Free Vibration Methods 

Observations of the free vibration response of a damped sys- 
tem are often used to characterize the damping in the system. If 
the specimen is released from some initial static displacement or 
if a steady-state forcing function is suddenly removed, the re- 
sulting free vibration response (Fig. 1) may be analyzed using 
the logarithmic decrement, a SDOF damping parameter. The 
logarithmic decrement is 

A = - I  In x~ [31 
n x~ 

I-- nT  d 

Time 

where x o and x n are amplitudes measured n cycles apart. Equa- 
tion 3 is based on the assumption of viscous damping, but for 
small damping, the loss factor from complex modulus notation 
may be approximated by: [26] 

A 
1"1 - [4] 

7c 

Commonly used modes of testing include torsional pendu- 
lum oscillation, [51 as shown in Fig. 2, and flexural vibration of 
beams or reeds. 127] Errors may result if more than one mode of 
vibration is significant in the free vibration response, or if the 
data are taken at large amplitudes where air damping is present. 

2.4 Forced Vibration Methods 

Forced vibration techniques are often more useful than free 
vibration techniques when control of amplitude and frequency is 
desired. Excitation may be sinusoidal, random, or impulsive, 
and response may be analyzed in either the time domain or the 
frequency domain. 

The simplest forced vibration technique involves the meas- 
urement of uniaxial hysteresis loops during low-frequency sinu- 
soidal oscillation of a tensile specimen in a servohydraulic me- 
chanical testing machine. {28, 29] The elliptical hysteresis loops 
are the Lissajous patterns formed by plotting the sinusoidally 
varying load (or stress) versus the corresponding strain (Fig. 3). 
Not surprisingly, the complex modulus notation also leads to the 
equation for an ellipse in the stress-strain plane. [26] For most 
composites, the loss factors are small enough that the ellipses are 
very narrow, and the loss factor can be approximated by the 
equation: 

Clamp 

Specimen 

Clamp 

Fig. 1 Free vibration decay curve. Fig. 2 Torsional pendulum apparatus. From Ref5. 
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a 

'n =~ is] 

where a and b are dimensions of the stress-strain ellipse in Fig. 
3. Exact relationships exist for high damping cases where the el- 
lipses are not narrow. [26] Because the loss factor is the tangent of 
a small phase angle, even small amounts of phase lag in the 
measurement system will cause errors. For example, electrome- 
chanicalXYrecorders may introduce phase lag errors at frequen- 
cies above 1 Hz. Recorder phase lag can be checked easily by 
plotting load versus load--if  the plot is not a straight 45 ~ line, the 

c 1 

S t r a i n  

Fig. 3 Stress-strain hysteresis loop. 

recorder is introducing its own phase lag. Similar fixed fre- 
quency oscillation tests form the basis for several commercially 
available dynamic mechanical analyzers, which are referred to 
in the ASTM standards. [51 In these systems, data reduction is 
automated by interfacing a desktop computer with the measure- 
ment transducers. Some of these systems can also be used in the 
flexural and torsional modes. These systems were developed 
primarily for polymer testing, however, and their limitations for 
composite testing have already been discussed under "Limita- 
tions." 

With the forced vibration techniques discussed above, data 
are obtained at the frequency of oscillation of the exciter in the 
testing machine, which may or may not be a resonant frequency 
of the specimen. If the forcing frequency is tuned to a resonant 
frequency of the specimen, the relationship between the input 
and the response takes on a special form--this is the basis of the 
so-called resonant dwell method, p3' 15.18, 30] A resonant dwell 
apparatus for double cantilever beans is shown in Fig. 4. In this 

ACCELEROMETER.~_ 
I_~.L~CLAMPING BLOCK 

SPECIMEN",, N ~ C L A M P I N G  SCREW 

Fig. 4 Resonant dwell apparatus for double cantilever beam 
specimen. From Ref 30. 
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Fig. 5 Typical frequency response curve. 
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Power Supply l 
HP 6218 A 

Displacement l~ 
rlaasurlng t- System 
Kaman KD-2400 

Response 
signal 

FFT I _ 
Analyzer I: Excitation signal 
HP 3582  A I 

HP 9000, -I HP7225A 
Model 332 _1 Printer J 

-~ Epson FX-80 
Fig. 6 Impulse-frequency response test apparatus for flexural 
vibration. From Ref 32. 

Conditioning ( 
Amplifier 
PCB 480 A 

case, when the specimen is excited at resonance, the loss factor 
is 

a(O)  
11 = C n a(L)  [61 

where Cn is a constant for the nth mode, a(O) is the base dis- 
placement amplitude, and a(L) is the tip displacement ampli- 
tude.130l 

By varying the forcing frequency, the so-called frequency re- 
sponse curve (or response spectrum) for the specimen can be 
swept out in the frequency domain, as shown in Fig. 5. The peaks 
in the curve represent resonant frequencies, and SDOF curve- 
fitting techniques such as the half-power bandwidth [25, 26] can be 
used at these frequencies. The loss factor here is equal to: 

Af 1 

-Tnn 

where Q is the quality factor (an electrical engineering term), Af 
is the bandwidth at the half-power points on the resonant peak, 
andfn is the peak frequency. Either the frequency domain trans- 
fer function (the ratio of  the response spectrum to the input spec- 
trum) or the response spectrum alone can be used for this SDOF 
analysis. 

Digital frequency spectrum analyzers based on the micro- 
computer-implemented Fast Fourier Transform (FFr) algo- 

I - -  Support Bracket 
/ 

Transduoor 
PCB 208 A03 ~ a s s  Nylon W i r ~  Areal . . . . .  tar 

pdim.n [ BaK ry0. ,3,4 

Conditioning ~ Conditioning 
Amplifier Amplifier I Excitation I HP 3682A I Response I 

PCB 480A I Signal ~ - ' - -~ - - " -J . .  Signal I B&K Type 2826 

HP Computer 
9000, Model 332 

soj 
Fig. 7 Impulse-frequency response test apparatus for exten- 
sional vibration. From Ref 32. 

rithm have made it possible to generate frequency response 
curves in real time, and techniques based on such analyzers will 
be discussed later. Curves such as Fig. 5 do not have sufficient 
frequency resolution for accurate determination of the half- 
power bandwidth, and smaller frequency spans centered on the 
peak frequency are required. Most FFT analyzers have a band- 
selectable (or "zoom") analysis feature that makes such high 
resolution possible. 

The so-called "swept-sine" test involves the use of variable 
frequency sinusoidal excitation to sweep out the frequency re- 
sponse curves. [6, 26, 31] Although this method is generally very 
slow, the input power is concentrated at one frequency, and this 
may be necessary to move large specimens. Random or impul- 
sivel]6, 32l excitation is a much faster way to generate the fre- 
quency response curve, but the excitation energy is broad-band 
in nature, and it may be difficult to move large specimens. Flex- 
ural and extensional versions of an impulse-frequency response 
apparatus based on a desktop computer interfaced with a FPT 
analyzer are shown in Fig. 6 and 7, respectively, t32] A torsional 
version of this apparatus has also been developed. [331 Results 
from resonant dwell, random, and impulse tests show good 
agreement.[ 16] 

3 Analytical Methods 

A variety of analytical models have been developed for pre- 
dicting damping in composites at the micromechanical and mac- 
romechanical levels. [t-4] Most of these models are based on the 
assumption of linear viscoelastic behavior, and as described ear- 
lier, this naturally leads to the use of the complex modulus nota- 
tion. Two basic analytical approaches will be outlined here: 

1. The use of the elastic-viscoelastic correspondence principle 
in combination with elastic solutions from mechanics of ma- 
terials and laminate theory 

2. The use of a strain energy formulation that relates the total 
damping in the structure to the damping of each element and 
the fraction of total strain energy stored in each element. 

Journal of Materials Engineering and Performance Volume 1 (1) February 1992--15 



In both approaches, equations for predicting the composite 
loss factor in terms of the constituent material properties and re- 
lated geometric information are derived. 

3.1 Correspondence Principle 

The basis of this approach is that linear elastostatic analyses 
can be converted to vibratory linear viscoelastic analyses by re- 
placing the static stresses and strains with the corresponding vi- 
bratory amplitudes of stress and strain and by replacing the elas- 
tic moduli with the corresponding complex moduli, tl~ I lJ As an 
example of the use of this approach in micromechanical analy- 
sis, consider the well-known "rule of mixtures" formula for pre- 
dicting El, the longitudinal modulus of a continuous fiber rein- 
forced orthotropic lamina. If the elastic moduli in this equation 
are replaced with the corresponding complex moduli, the result- 
ing equation is 

* + * 
E l = E ; y f  E mV m [ 8 ]  

where E~ and Fm are the longitudinal complex moduli of fiber 
and matrix materials (the functional dependence on frequency,f, 
is not shown here for the sake of brevity), respectively, and vfand 
Vm are the volume fractions of fiber and matrix, respectively. By 
separating the real and imaginary parts of this complex equation 
(e.g., Eq 2), equating the real and imaginary parts of both sides 
of  the equation and then dividing the imaginary part by the real 
part, we obtain the equation for the longitudinal loss factor: 

P,' t V E1 E/  rlf vf + E m rlm m 

"q I = E~ - E" v + E" m v m f f  
[91 

where Ef and E ~  are the storage moduli of fiber and matrix, re- 
spectively, and'qfand rim are the loss factors of fiber and matrix, 
respectively. Similar equations for other lamina properties have 
also been derived, along with transformation equations for off- 
axis lamina properties. [34, 35] The same approach has been used 
to develop micromechanical loss factor equations for discon- 
tinuous aligned fiber composites [351 and randomly oriented 
short-fiber composites. [36] Figures 8 and 9 show the variation of 
predicted and measured loss factors of unidirectional graph- 
ite/epoxy with fiber aspect ratio and fiber orientation, respec- 
tively. [351 In these figures, the correspondence principle was 
used to derive the micromechanics equations, whereas the im- 
pulse-frequency response techniqueI32} was used to measure the 
loss factors. Typically, the analytical models are used to back- 
calculate fiber damping from measured composite and matrix 
damping, because fiber damping data are generally not avail- 
able. The difficulty with this approach is that the back-calculated 
fiber damping value probably includes some damping due to the 
fiber/matrix interphase region. More refined models are needed 
to account for such inaccuracies. 

The correspondence principle has also been used in combi- 
nation with classical laminate theory [91 to develop macrome- 
chanical equations for laminate loss factors. DTI For example, the 
extensional loss factors for a laminate can be expressed in terms 
of the real and imaginary parts of the corresponding laminate ex- 
tensional stiffnesses: 

A l l . .  n!A,S 
zj 

[10] 

Similar equations can be used to describe laminate coupling 
and fiexural loss factors. [371 The major limitation of such analy- 
ses is that laminate theory is based on the assumption that each 
lamina is in simple plane stress, and interlaminar damping is ig- 
nored. A more general three-dimensional analysis based on the 
strain energy approach is presented in the next section. 

3.2 Strain Energy Method 

The concept of damping in terms of strain energy was appar- 
ently first introduced in 1962 by Kerwin and Ungar, [38] who 
found that, for an arbitrary system of linear viscoelastic ele- 
ments, the system loss factor could be expressed as a summation 
of the products of the individual element loss factors and the 
fraction of  strain energy stored in each element as: 

n n 

rl= ~ rli Wi/  ~ Wi [11] 

i=l  i=l 

where r h is the loss factor for ith element, Wi is the strain energy 
stored in ith element at maximum vibratory displacement, and n 
is the total number of elements. 

This equation was later implemented in finite-element form 
in the so-called "modal strain energy" approach for the analysis 
of modal damping in complex structures. [39] The finite-element 
model is used to determine the strain energy distribution; then 
the loss factor for each element is multiplied by the fraction of 
the strain energy stored in each element, and the results are 
summed over the entire structure. More recently, the equation 
has been used in finite-element form to model damping in com- 
posites at the micromechanical I4~ and macromechanical t4t, 421 
levels. Closed form solutions for composite loss factors based 
on the strain energy approach have also been derived. [31, 43] 

Typical results from the strain energy/finite element ap- 
proach are shown in Fig. 10 through 12. Figure 10 shows some 
two-dimensional micromechanical results for loss factor versus 
fiber end gap size for a discontinuous aligned composite.J4~ Fig- 
ure 11 shows the contribution of interlaminar damping in a lami- 
nate under extensional vibration, as determined from three-di- 
mensional analysis.[41 ] The decomposition of total damping into 
contributions associated with each stress component is a rela- 
tively simple task with this method. Finally, as an example of the 
application of this method to relatively complex composite 
structures, Fig. 12 compares loss factors from strain energy pre- 
dictions with measurements for a composite beam with a con- 
strained viscoelastic layer surface damping treatment. [44] As 
shown in this figure, the potential for optimization of damping is 
obviously improved by the use of such analytical tools. Optimi- 
zation of damping in composites has been the subject of several 
analytical investigations, [45-471 but there is a need for experi- 
mental verification of predicted optimum designs. The potential 
for optimization of damping has been enhanced through such 
concepts as hybridization of  fiber and matrix materials and con- 
trol of geometric parameters such as lamina orientation and 
stacking sequence. 
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sional vibration. From Ref 41. 
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4 Concluding Remarks 

The principle damping mechanism in undamaged polymer 
composites vibrating at small amplitudes is linear viscoelastic 
behavior of fiber and/or matrix materials. The complex modulus 
notation provides a mathematically consistent way of describing 
such behavior, and the loss factor is a convenient damping pa- 
rameter for both experimental and analytical approaches. A va- 
riety of analytica] and experimental techniques exist for charac- 
terization of the loss factor in polymer composites, but there is 
still a need for coordinated analytical/experimental programs to 
resolve issues such as the contribution of the fiber and the fi- 
ber/matrix interface (or interphase, as the case may be) to total 
damping, damping under complex multiaxial states of stress, 
both material and geometric nonlinear effects under extreme 
loading and/or environmental conditions, and the use of hybrid 
composites and other design concepts for structural optimiza- 
tion. 
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